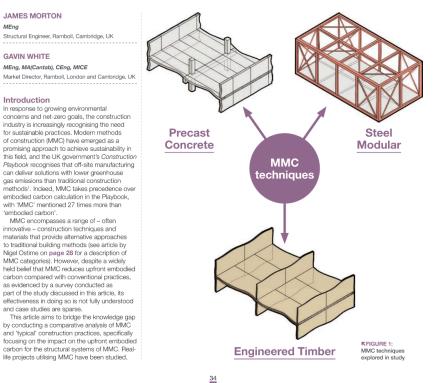
Modern Methods of Construction: A Study of Upfront Carbon

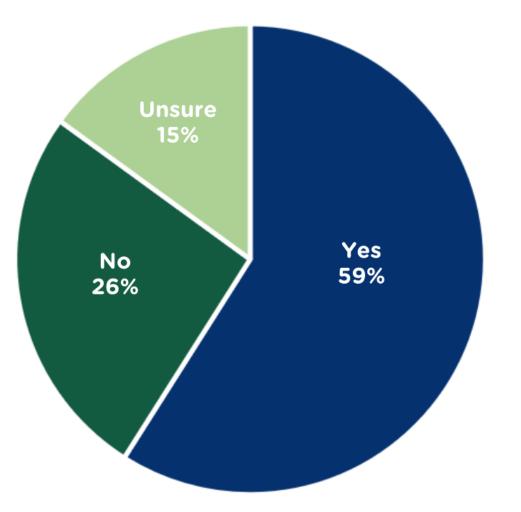
James Morton – Structural Engineer

Why?

- Lack of evidence or comparison between MMC and typical construction techniques
- Growing desire for the use of MMC, typically in government-backed projects (Construction Playbook)


JAMES MORTON MEna

GAVIN WHITE


Introduction

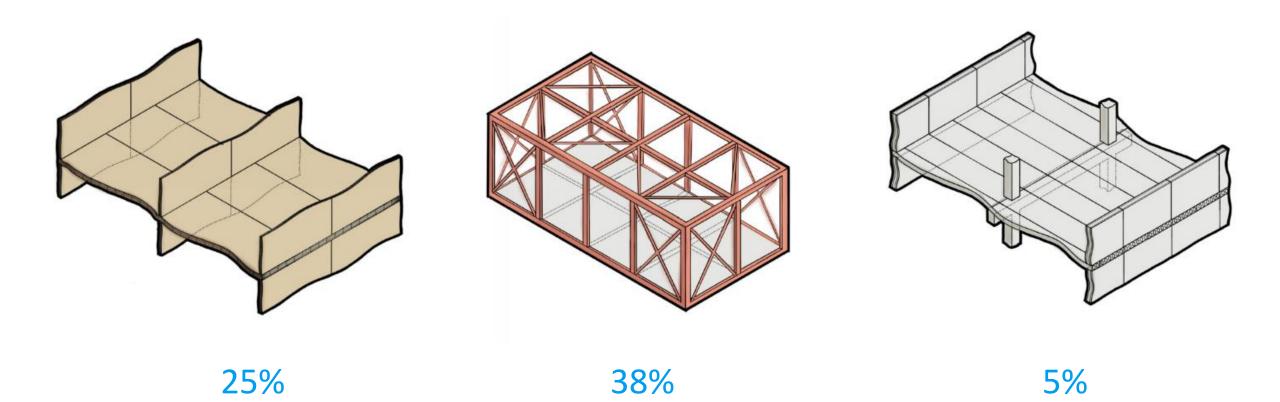
'embodied carbon'

Modern methods of construction: a study of upfront embodied carbon

Do you believe that MMC reduces the embodied carbon in structure?

Industry Survey

- LinkedIn poll with 218 responses asking the question 'Do you believe that MMC reduces the embodied carbon in structures?'
- Focused analysis on 40 individuals across all aspects of the construction industry


What's currently happening?

Fewer than 20% of projects have MMC in their design brief (73% of responses)

Although...

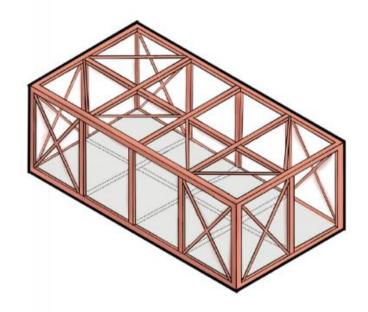
Over 20% of projects are utilising MMC for their main structure (65% of responses)

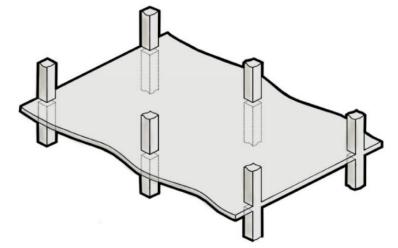
What is the most sustainable MMC technique?

What needs to happen next?

100%

...agree there needs to be further research into MMC to inform decision makers

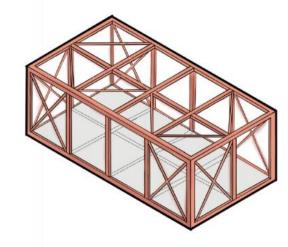

Modular vs. Insitu RC

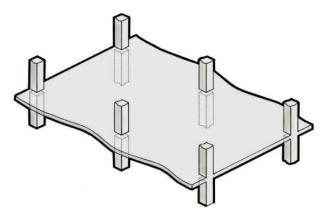

Calculation considered:

- Steel Columns
- Steel Beams
- Composite floor
- Bracing Elements

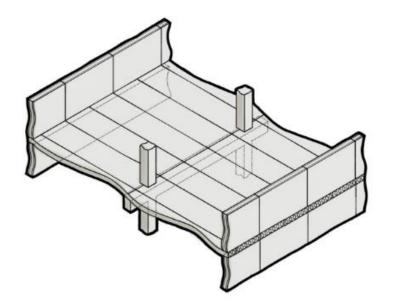
Did not include:

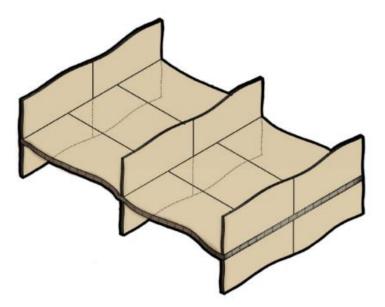
- Concrete core (assumed to be the same for RC in-situ)
- Finished
- Services





Modular vs. Insitu RC


- Significant difference in A1-A3 emissions (product stage – cradle to gate)
- Increased emissions in transportation (A4)
- Savings found in the emissions associated with waste (A5.3)


Construction Technique	Embodied Carbon (kgCO₂e/m²)				
	A1-A3	A4	A5.3	A1-A5.3	
In-situ RC	128	6	8	142	
Steel Modular	277	15	3	295	

What about the other techniques?

Construction Technique	Embodied Carbon (kgCO ₂ e/m ²)				
	A1-A3	A4	A5.3	A1-A5.3	
In-situ RC	125	5	8	138	
Pre-cast Concrete	131	15	4	150	

Construction Technique	Embodied Carbon (kgCO₂e/m²)				
	A1-A3	A4	A5.3	A1-A5.3	
In-situ RC	136	6	9	151	
CLT	81	27	4	112	

Where could we see carbon reductions?

- Fully fitted modular developments vs. fully fitted typical construction
- The reuse of modules at the end of life (module D)
- Highly repeatable structures to improve efficiency, such as:
 - Schools and other education facilities
 - Healthcare
 - Housing
 - Government assets
- Lifting systems that don't add excess material to the final structure, or reusable lifting bracing
- Waste reductions may start to produce a larger proportion of carbon values

How we aim to take this research further...

- Understand the carbon impact of fully fitted modules, when compared to our typical construction approach
- Compare data and literature on the production efficiency of modular construction and waste data
- Develop this study with more case studies, including:
 - Education
 - Healthcare
 - Infrastructure
- Explore the carbon potential of other modular structures, outside of steel
- Review transport emissions, both A2 and A4 emissions, associated with modular

Let's collaborate!

Drop me an email or connect on LinkedIn

Email: james.morton@ramboll.co.uk

LinkedIn: www.linkedin.com/in/jamesmorton14

Bright ideas. Sustainable change.

